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Crystal Structure and Physical Properties of (BMDT-TTF)SbFg
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In a crystal of (BMDT-TTF)SbFg, quasi two-dimensional(2D)
intermolecular interactions of BMDT-TTF molecules are observed. This
compound was a semiconductor with fairly high room temperature
conductivity (ca. 1 S em-1), and would be a simple model compound for
the consideration of electron-electron interaction in quasi 2D
half-filled band system.

In the molecular conductor, the 1:1 salt comprised of one electron (hole) for
every molecule has been considered low conductive. For example, RbeTCNQ-II
with a one-dimensional uniform TCNQ column is not metallic, in contrast to
TTF. TCNQ and NMP.TCNQ containing similar TCNQ column.l) This indicates that a
simple band picture with a half-filled conduction band should be affected by the
electron-electron interaction. It is well-known that there exists antiferro-
magnetic interaction between adjacent sites in the highly correlated band system.
Three-dimensional magnetic orderness, however, does not develop usually in the
organic conductors because of its strong one-dimensionality. Recent progress of
the molecular conductor has provided the multi-dimensional system.z) We are much
interested in the possibily of the magnetic orderness in the multi-dimensional
system with the half-filled band. In this paper, we report crystal structure of
(BMDT-TTF)SbFg (BMDT-TTF;bis(methylenedithio)tetrathiafulvalene) and indicate that
this compound has very simple half-filled band with weak one-dimensionality (quasi
two-dimensional character).

Black elongated plates of (BMDT-TTF)SbFg were obtained by the electrochemical
oxidation of a 1,1,2-trichloroethane solution containing BMDT-TTF and (n-CgHg)4N
SbFg at a constant current of 1 pA. Crystal data: CgHySgSbFg, triclinic, space
group PT, a=9.573(3), b=7.500(2), c=5.633(2) 3, a=100.20(3), B=91.61(3), Yv=90.96
(2)°, vV=397.7 53, Zz=1. Intensities were measured on a Rigaku automated
four-circle diffractometer with Mo Kg radiation up to 20=60°. Independent 2892
reflections (|Fg|>30 (|Fo|)) were used for calculations. The structure was solved
by the direct method and refined to the conventional R value of 0.039. The final
atomic coordinates are given in Table 1.

The crystal structure of (BMDT-TTF)SbFg is shown in Fig. 1. The BMDT-TTF
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Tabl

e 1. Fractional atomic

coordinates ( x 103 for H atoms;
x 104 for others ) with their
estimated standard deviations

Atom X ' Z

Sb 0 0 0
F(1) 1854(3) -567(5) 764(7)
F(2) 634(4) 2261(4) -656(7)
F(3) 247(5) -1115(5) -3235(7)
S(1) 3276(1) 1581(1) 6583(2)
S(2) 5009(1) 1869(1) 2457(2)
S(3) 1816(1) 5090(2) 6023(2)
S(4) 3524(1) 5331(2) 1771(2)
C(1) 4637(4) 733(5) 4794(8)
Cc(2) 2983(4) 3381(6) 5131(8)
C(3) 3782(5) 3509(5) 3229(8)
Cc(4) 1844(6) 5828(7) 3123(10)
H(1) 78(8) 501(10) 207(15)
H(2) 173(9) 745(10) 357(17)
Table 2. Comparison of bond lengths

(A) of BMDT-TTF(neutral) and BMDT-TTF+*
The bond lengths b, ¢, and d are average

values, with an approximated Djp symmetry.

neutral BMDT-TTF*
a 1.327 1.361
b 1.766 1.730
c 1.738 1.722
d 1.334 1.350

Tabl

e 3. Overlap integrals Sy (x 103)

of the HOMO in (BMDT-TTF)SbFg

Sp -5.10
Sc -12.48
Sb+c 0
Sp-c 0.81
S_a+b 0.23
Sy indicates the overlap integral

between molecules interrelated by the

translation vector v.
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Fig. 1. Crystal structure of
(BMDT-TTF ) SbFg.

Fig. 2. Mode of intermolecular

overlapping.

Fig. 3. Side-by-side arrangement of
BMDT-TTF molecules.
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Fig. 4. "Artificial" Fermi surface of Fig. 5. Electrical resistivity of
(BMDT-TTF)SbFg obtained by a simple tight- (BMDT-TTF)SbFg along the c axis.

binding approximation.

molecule lies on an inversion center, and almost planar. Lengthened C=C distances
(a, d; in Table 2) and shortened C-S distances (b, c) of BMDT-TTF* compared with
those of neutral BMDT-TTF3) are in good agreement with the result of the molecular
orbital calculation; the HOMO (highest occupied molecular orbital) has nodal
planes on every C-S bond. This is just the same as we can see in the BEDT-TTF
compound.4) The BMDT-TTF units are repeated along the b axis in a face-to-face
manner. In this direction, an adjacent molecule is largely shifted along the long
axis (Fig. 2) and there 1is no short intermolecular S+***S distance (<3.70
i; van der Waals distance), in spite of rather short interplanar distance (3.45
i). On the other hand, the BMDT-TTF .molecules interrelated by the unit
translation along the ¢ axis are connected to each other by many short
intermolecular S*°*°*S contacts (Fig. 3). Such a side-by-side arrangement 1is
frequently observed in the crystals of molecular conductors based on the BEDT-TTF
type donor or the dmit(dimercaptoisotrithione) complexes.z) In addition to these
intermolecular interaction parallel to the bc plane, we observe a short
intermolecular S(3)°***S(3) distance (3.62 i) between molecules interrelated by the
translation vector a-b (and -a+b). All these structural features indicate that in
this crystal there exist two-dimensional donor sheets which are parallel to the bc
plane and weakly interrelated to each other along the a axis. Such a
multi-dimensional molecular arrangement, which is not based on the conventional
column formation, is the most characteristic feature of the BMDT-TTF compounds.

In order to investigate the electronic structure, we first calculated the
intermolecular overlap integrals (S) of HOMO of BMDT-TTF (Table 3).5) The
strongest interaction is observed along the side-by-side arrangement (Sg). The Sg
value is larger than the corresponding S value in B—(BEDT-TTF)ZPF6,6) which is the
first one-dimensional organic conductor along the side-by-side array. On the
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other hand, the Sp value (po-po type overlap) is rather small, as a result of the
insufficient face-to-face overlapping (Fig. 2). The anisotropy Sp/Sc=0.4 is much
larger than that in the Bechgaard salt (TMTSF)2X (=0.1). The S_z+p Value
indicates weak interaction among the donor sheets along the a axis.

The tight-binding approximation gives a simple two-dimensional energy band,

E(k)=2tpcos(kb)+2tscos(kc),
where we neglect the weak interactions, S_p,c and S_z,p- This energy band is
half-filled and the Fermi surface contains largely distorted planes ( Fig. 4 ). 7)
This simple band picture predicts that this compound behaves as a metal. The
resistivity measurement along the ¢ axis, however, shows that this compound is a
semiconductor ( Ez= 0.12 eV ) although the room-temperature conductivity (ca. 1
scm-1) is very high as a 1:1 salt ( Fig. 5 ).

These results indicate that a simple band picture of non-interacting
electrons does not suffice for the full understanding of the electronic structure.
The introduction of on-site Coulomb repulsion would 1lead the system to the
non-metallic state. This has been shown by preliminary ESR measurements.8)
(BMDT-TTF)SbFg exhibits a broad ESR signal (linewidth AB=21 G) at room temperature
when the static magnetic field is applied perpendicular to the c¢ axis. The
intensity decreases monotonously only by a factor of 0.5 from 300 K to 5 K,
although the intensity for a semiconductor of a simple band model is expected to
tend to vanish at low temperature.

In conclusion, (BMDT-TTF)SbFg is not a simple non-magnetic semiconductor. In
any case, (BMDT-TTF)SbFg would be a prototype for the examination of the theory of
the electron-electron interaction. Detailed ESR study will ©be reported

elsewhere.
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